
FFTs in External or Hierarchical Memory
David H. Bailey

December 30, 1989
Ref: Journal of Supercomputing, vol. 4, no. 1 (March 1990), p. 23{35

Abstract

Conventional algorithms for computing large one-dimensional fast Fourier transforms
(FFTs), even those algorithms recently developed for vector and parallel computers, are
largely unsuitable for systems with external or hierarchical memory. The principal reason
for this is the fact that most FFT algorithms require at least m complete passes through
the data set to compute a 2m-point FFT.

This paper describes some advanced techniques for computing an ordered FFT on a
computer with external or hierarchical memory. These algorithms (1) require as few as two
passes through the external data set, (2) employ strictly unit stride, long vector transfers
between main memory and external storage, (3) require only a modest amount of scratch
space in main memory, and (4) are well suited for vector and parallel computation.

Performance �gures are included for implementations of some of these algorithms on
Cray supercomputers. Of interest is the fact that a main memory version outperforms the
current Cray library FFT routines on the Cray-2, the Cray X-MP, and the Cray Y-MP
systems. Using all eight processors on the Cray Y-MP, this main memory routine runs at
nearly two giga
ops.

The author is with the Numerical Aerodynamic Simulation (NAS) Systems Division at
NASA Ames Research Center, Mo�ett Field, CA 94035.

1



Introduction

The development of numerous advanced architecture computers has posed a consid-
erable challenge to computer scientists. Many numeric algorithms that were completely
satisfactory for traditional serial computers are unsatisfactory for these advanced systems.
This phenomenon is particularly pronounced in the case of algorithms for evaluating one
dimensional fast Fourier transforms.

One reason for this di�culty is the fact that many modern computers, particularly
those with interleaved main memories, do very poorly with data that is accessed with a
memory stride that is a large power of two. By far the most popular sizes of data to be
transformed using FFTs are powers of two, and traditional implementations of FFTs for
such data sets involve heavy use of power of two memory strides. Fortunately, it is possible
to devise alternative FFT algorithms that do not rely on power of two strides. Indeed,
some FFT algorithms can be performed using exclusively unit stride data access in inner
computational loops [3], [5], [6], [9], [10]. Even for systems with external or hierarchical
memory systems, these unit stride algorithms are a de�nite improvement over conventional
algorithms, since unit strides improve the locality of accesses to and from external memory.

However, many FFT algorithms, both traditional and modern, still require roughly m
passes through the data set to compute a 2m-point FFT. The number of required passes
can be signi�cantly reduced by using radix-4 or radix-8 variations of these algorithms,
but the number of passes remains proportional to m. Since such external data access is
usually a crucial bottleneck in such computations, it would be highly desirable to reduce
this number to a bare minimum.

The Basic \Four Step" FFT Algorithm

There is one algorithm in the FFT literature that is quite e�ective in reducing the
number of passes through the dataset. Recently variants of this algorithm were featured
in papers by Agarwal and Cooley [1, p. 150], Ashworth and Lyne, [4, p. 219], and
Swarztrauber [10, p. 202 - 203]. Swarztrauber used this technique as a starting point for a
very e�cient hypercube FFT, and both [1] and [10] noted the suitability of this algorithm
for systems with nonlocal memory systems, including hierarchical and distributed memory
designs. However, as it turns out, this algorithm was actually �rst presented over twenty
years ago in a paper by Gentleman and Sande [8, p. 569]. This early paper even described
the application of this algorithm to a system with hierarchical memory. Unfortunately,
this algorithm appears to have been largely forgotten in the interim, as a number of more
recent papers have suggested much less e�cient methods.

This algorithm, which shall hereafter be referred to as the \four step" FFT algorithm,
can be stated very succinctly. Let n = n1n2 be the size of the transform. Note that n
does not necessarily need to be a power of two. On many systems, the implementation
of this algorithm is most e�cient when n1 and n2 are as close as possible to

p
n. In the

following and hereafter, matrices will be assumed to be stored in memory columnwise as
in the Fortran language. The FFT of n complex input data values can then be obtained
by performing the following four steps:

2



1. Perform n1 simultaneous n2-point FFTs on the input data considered as a n1 � n2
complex matrix.

2. Multiply the resulting data, considered as a n1� n2 matrix Ajk, by e�2�ijk=n. The �
sign is the sign of the transform.

3. Transpose the resulting n1 � n2 complex matrix into a n2 � n1 matrix.

4. Perform n2 simultaneous n1-point FFTs on the resulting n2 � n1 matrix.

Several important features of this algorithm should be noted: �rst of all, note that both
of the simultaneous FFT steps can be performed using exclusively unit stride data access,
which is optimal on virtually any computer system. Secondly, this algorithm produces an
ordered transform (provided the simultaneous FFTs are ordered) | it is not necessary
to perform a bit reversal permutation, which is ine�cient on many advanced computer
systems. Finally, note that only three passes through the external data set are required to
perform this algorithm | the second step can be performed on a block of data after the
�rst step, before it is returned to memory. This bounded number of passes is in accordance
with the I/O complexity results in [2].

Main Memory Performance Results using the Four Step FFT

Depending on implementation, the four step FFT algorithm may actually require a
slightly larger number of 
oating-point arithmetic operations than conventional FFT algo-
rithms. In spite of this slight handicap, it is remarkably e�cient even for a single processor
vector computer transforming data in main memory. As can be seen in tables 1 and 2,
a straightforward implementation of this scheme is up to 10% faster than Cray's library
routine on the Cray-2 and up to 20% faster than Cray's library routine on the Cray Y-MP.
The percentage results on the Cray X-MP are very close to those on the Cray Y-MP, which
is to be expected since the CPU and memory designs of the X-MP and Y-MP systems are
very similar, di�ering mainly in speed of operation. For these tests, the four step FFT
algorithm was implemented using a simple Fortran program; assembly code was employed
only within the Cray library simultaneous FFT routine (CFFTMLT), which is called by
this Fortran program to perform steps 1 and 4. The transpose step (step 3) was performed
without power of two strides by employing a diagonal technique, as mentioned in [6, p.
85]. The Cray-2 library 1-D FFT routine (CFFT2) used in table 1 is an assembly-coded
implementation of an algorithm described by the author in a previous paper [6]. The Cray
Y-MP library 1-D FFT routine (CFFT2) used in table 2 is essentially the same routine
that has been available for some time on the Cray X-MP systems.

The CPU times shown in both tables 1 and 2 are for forward 2m-point FFTs followed
by inverse FFTs, averaged over ten trials, in seconds. All mega
ops performance �gures
in these tables are computed based on 10m2m 
oating-point operations, even though the
four step routine may perform slightly more than this �gure. These tests were run in a
typical daytime environment, and so the results re
ect a normal amount of memory bank
contention. The computers used for these tests belong to the Numerical Aerodynamic

3



Simulation (NAS) Systems Division at NASA Ames Research Center. This particular
Cray-2 system has a clock period of 4.1 nanoseconds (ns), and has 268 million words of 80
ns DRAM main memory. The Cray Y-MP system used for these tests has a clock period
of 6.3 ns and 33 million words of bipolar main memory. This Y-MP system was the �rst
Y-MP delivered by Cray. Newer Y-MP systems have a faster clock (6 ns), and thus these
results would be correspondingly better on the newer systems.

The results listed in tables 1 and 2 are single processor results | no attempt was made
to employ more than one processor. However, with the new \autotasking" feature now
available on Cray systems, it is possible to study the performance of a program using all
available processors, with only a minimumof changes to the source code. When autotasking
was invoked on the Fortran program mentioned above, performance levels very nearly eight
times the single processor levels were achieved on the eight processor Y-MP. These results
are shown in table 3. This very high speedup underscores the suitability for the four step
FFT algorithm for parallel processing.

FFTs on Data in External or Hierarchical Memory Systems

The Cray-2 is noted for its very large main memory. Most Cray-2 systems include 268
million 64 bit words of main memory, although recently Cray has shipped a 536 million word
system. However, the performance of the Cray-2 on many codes in a normal production
environment is not outstanding, due to severe memory bank contention, a direct result
of the relatively slow operation speed of DRAM memory chips. Most Cray X-MP and
Y-MP systems utilize a faster technology (bipolar) in main memory, so that memory bank
contention is very much reduced. However, bipolar memory chips are not available in
nearly the density of equivalent generation DRAM chips, and so as a result the largest
main memory currently available for Y-MP systems is 33 million 64 bit words. Y-MP
systems typically have eight CPUs, so this means an average of only four million words
per processor. Systems that support interactive as well as batch users must be even more
restrictive in the amount of main memory that can be allocated to a single job.

As a result, users of the Cray X-MP and Y-MP systems who wish to perform large one
dimensional FFTs are led to consider utilizing the solid state disk (SSD) available on these
systems. SSD systems with a capacity of up to 536 million words are now available on
the Y-MP. Users of the ETA-10 or the IBM 3090/VF systems have an analogous choice in
utilizing the virtual memory system, which is a large semiconductor memory similar to the
Cray SSD, but which does not require explicit programmer input/output commands. Users
on other systems can even consider utilizing disk drives, although the relative slowness of
such devices compared to main memory is a bottleneck even with the best of algorithms.

In addition to minimizing the number of data accesses to an external memory device, an
obvious consideration in designing an e�cient algorithm for such systems is to minimize
the amount of scratch space required in main memory. Clearly if an external memory
algorithm requires a substantial scratch array in main memory, then the largest transform
size will again be limited by the available main memory. In addition, it will be assumed in
the following that the amount of external memory is also limited and must be conserved.

4



Size Four Step FFT Cray Library FFT
m Time MFLOPS Time MFLOPS
8 0.0005 42.5 0.0004 57.2
9 0.0008 60.9 0.0006 81.8
10 0.0013 76.4 0.0010 106.0
11 0.0021 106.6 0.0021 109.4
12 0.0036 137.8 0.0038 130.6
13 0.0074 143.8 0.0073 145.2
14 0.0145 158.5 0.0138 165.7
15 0.0300 163.9 0.0327 150.2
16 0.0559 187.5 0.0660 159.0
17 0.1248 178.6 0.1260 176.8
18 0.2426 194.5 0.2555 184.7
19 0.4971 200.4 0.5763 172.9
20 1.0260 204.4 1.1863 176.8

Table 1: The Four Step FFT vs. Cray's Library Routine on the Cray-2

Size Four Step FFT Cray Library FFT
m Time MFLOPS Time MFLOPS
8 0.0003 68.68 0.0001 137.85
9 0.0005 102.24 0.0003 151.88
10 0.0008 128.16 0.0006 161.27
11 0.0013 168.91 0.0013 168.08
12 0.0024 201.90 0.0028 173.51
13 0.0049 215.88 0.0060 178.09
14 0.0103 222.57 0.0126 181.86
15 0.0212 231.67 0.0265 185.24
16 0.0443 236.78 0.0557 188.26
17 0.0935 238.39 0.1167 190.97
18 0.1976 238.81 0.2439 193.44
19 0.4117 241.96 0.5090 195.70
20 0.8587 244.23 1.0635 197.20

Table 2: The Four Step FFT vs. Cray's Library Routine on the Cray Y-MP

5



Size Time MFLOPS Speedup
12 0.00079 625.09 3.096
13 0.00138 771.49 3.574
14 0.00218 1053.61 4.734
15 0.00376 1308.07 5.646
16 0.00667 1571.73 6.638
17 0.01318 1690.03 7.089
18 0.02566 1838.72 7.700
19 0.05275 1888.53 7.805
20 0.10882 1927.12 7.891

Table 3: Cray Y-MP Performance of the Four Step FFT Using Eight Processors

It will also be assumed for the time being that the �nal result in external memory must
be physically ordered | index schemes or \virtual" orderings of external blocks will not
be allowed.

Reducing the Scratch Space Requirement in the Four Step FFT

As presented above, a straightforward implementation of the four step FFT algorithm
requires scratch space for several di�erent purposes. These are as follows:

� 2n cells for the precomputed root of unity table.

� 2n cells of scratch space for the simultaneous FFT steps.

� 2n cells of scratch space for the transpose step.

The scratch space requirement for the simultaneous FFT steps can easily be reduced
by noting that the n1 simultaneous n2-point FFTs (i.e. in step 1 of the four step FFT)
may be performed in batches of v rows, where v is the natural vector length of the system
being used. If the simultaneous FFTs employ an algorithm, such as the Stockham FFT,
which requires a scratch array the same size as the input data array, then only 4vn2 scratch
cells are required. This �gure may be reduced by one half if an in-place algorithm can be
e�ciently used for the simultaneous FFTs. Note that if the individual processors do not
rely on vector processing, then only one row need be fetched at a time, and these scratch
space �gures drop to only 4n2 cells and 2n2 cells, respectively. For step 4 of the four step
FFT, the corresponding scratch space �gures may be obtained by replacing n2 by n1 in
the above discussion.

However, the scratch space requirements for the simultaneous FFT steps in reality are
dependent more on the block size b of an e�cient input/output (I/O) transfer between
main and external memory. In other words, if the natural I/O block length is 128, then
128 rows of the n1 � n2 complex matrix should be fetched into main memory, or else the

6



I/O operations will be highly ine�cient. Thus it follows that a main memory scratch space
of size 2bn2 + 2vn2 is needed for the �rst step of the four step algorithm. In an similar
manner, the last step of the four step FFT requires 2bn1 + 2vn1 scratch cells. The second
term of each of these expressions may be omitted if an in-place algorithm can be e�ciently
used for simultaneous FFTs in main memory.

The scratch space for the two FFT steps could be reduced to virtually zero if an FFT
algorithm somewhat more complicated than the four step FFT were used. This algorithm
is as follows:

1. Transpose the input data set, considered as a n1�n2 complex matrix, into a n2�n1
matrix.

2. Perform n1 individual n2-point one dimensional FFTs on the resulting n2�n1 matrix.

3. Multiply the resulting n2 � n1 complex matrix Aij by e�2�ijk=n.

4. Transpose the resulting n2 � n1 matrix into a n1 � n2 matrix.

5. Perform n2 individual n1-point one dimensional FFTs on the resulting n1�n2 matrix.

6. Transpose the resulting n1 � n2 complex matrix into a n2 � n1 matrix.

This algorithm, which could be termed by analogy the \six step" FFT algorithm, is very
well suited for distributed memory systems, as the individual one dimensional FFTs can be
performed in individual processors. Its main memory scratch requirement is only 4n2 cells
for step 2 and 4n1 cells for step 5 (per processor). As before, if an in-place FFT algorithm
can be e�ciently used in main memory, then these �gures can be reduced by one half.
However, there are other ways of performing FFTs on systems such as MIMD hypercubes
[10], and the six step FFT has the serious disadvantage of requiring an additional two
transpose steps, which typically are the chief bottlenecks on any system with a distributed
or external memory.

Reducing the size of the precalculated root of unity table used in step 2 of the four step
FFT algorithm is somewhat trickier. Nonetheless, it can be reduced in size to virtually
zero with only a slight increase in overall run time, by using what may be termed the
dynamic block scheme for roots of unity. The full size n1 � n2 root of unity table can be
written as U(j; k) = �jk where � = e�2�i=n. Let B(r; s) denote a block of dimensions a� b
within the matrix U . Note that

U(j + ra; k + sb) = �(j+ra)(k+sb)

= �jk�jsb�rak�rasb

= U(j; k)U(j; sb)U(ra; k)U(ra; sb)

7



Thus an a� b block B(r; s) in the interior of U can be dynamically computed as follows:

B(r; s) = top left block [i:e: B(0; 0)]

� \spike" from top edge

� \spike" from left edge

� upper left corner element of B(r; s)

This scheme can be visualized as in �gure 1. It can be implementedwith only one additional
complex multiplication in the innermost loop. The storage requirements for those subsets
of U array that must be precomputed are as follows:

Description Size
Upper left basic block 2ab
\Spikes" from top edge 2an2=b
\Spikes" from left edge 2bn1=a
Block corners 2n=ab

If we assume that n1 = n2 = a2 = b2 (which is an optimal choice), then the total
space is only 8

p
n cells, a su�ciently small amount that this data can be kept in main

memory. In tests of this scheme on Cray systems, the author merely selected a and b
to be 64, the natural vector length. With this choice, only a few thousand cells of main
memory are required even for multimillion point transforms. Performance tests of FFTs
using this scheme indicates that it adds only about �ve percent to the total run time (for
larger transforms), and the accuracy of the dynamically calculated roots is excellent.

Transposing Arrays in External Memory

The transpose step (step 3 of the four step FFT) is perhaps the most challenging
to perform e�ciently on a data set residing in external memory. Before discussing this
matter in detail, it should be recalled that the array to be transposed consists of complex
data. In the following discussion it will be assumed that the real and imaginary parts of
this data are stored in completely separate memory locations, not interleaved as is the
Fortran convention. In this way the problem of transposing a complex array reduces to
transposing two real arrays. In fact, separate storage of real and imaginary data avoids
a signi�cant performance degradation in computing with complex data on a number of
systems, including the ETA-10 and the Cray-2, since the standard Fortran COMPLEX
data format requires stride two access.

Probably the most e�cient algorithm currently known to transpose data in external
storage is due to Fraser [7]. A particularly attractive aspect of this algorithm is that it can
easily be tuned for maximume�ciency on a given system. It is easier to exhibit an example
of Fraser's algorithm than to precisely state it. Suppose one wishes to transpose a 28 � 27

matrix, which resides on an external random access dataset, into a 27�28 matrix. Suppose
also that the size of an e�cient I/O block is 64 = 26, that two main memory bu�ers of size
512 = 29 are available, and that an external scratch dataset of size 215 is available. Let the

8



Figure 1: The Dynamic Block Scheme for Roots of Unity

9



notation (0 1 2 ... 12 13 14) denote the binary digit positions in the reverse binary
expansion of an index in the 215-long input array. Then the steps required to transpose
this array can be compactly presented as follows:

E1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

M1 0 1 2 3 4 5 8 9 10 11 12 13 14 6 7

M2 8 9 10 0 1 2 3 4 5 11 12 13 14 6 7

E2 8 9 10 0 1 2 11 12 13 14 3 4 5 6 7

M1 8 9 10 0 1 2 11 12 13 14 3 4 5 6 7

M2 8 9 10 11 12 13 0 1 2 14 3 4 5 6 7

E1 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7

The notation at the beginning of each line indicates the source of the data in each operation:
E1 denotes external dataset number 1, M2 denotes main memory bu�er number 2, etc.
Note that the transfers between external memory and main memory only alter locations
6 through 14, and leave locations 0 through 5 unchanged (i.e., 64-long contiguous blocks
are preserved), and that transfers between two main memory bu�ers only alter locations
0 through 8 (i.e. only a�ect data within a single 512-long main memory bu�er).

The �rst step, from external to main, involves fetching contiguous blocks of size 64
from disk with a block stride of four (i.e. fetch the �rst 64-long block, skip three blocks,
fetch the �fth 64-long block, etc.). The �rst step is done in batches of 8 blocks, so that 512
words are fetched to one of the main memory bu�ers before proceeding. The second step,
which is performed between the two main memory bu�ers, is to transpose the resulting
512-long array, considered as a 64 � 8 matrix, into a 8� 64 matrix. In the third step, the
eight 64-long blocks in the main memory bu�er are stored out to external memory, this
time with a block stride of eight. This completes one pass through the external data set.
In the next pass, eight contiguous 64-long blocks are fetched into main memory, and the
resulting 512-long array is transposed in a block fashion that preserves 8-long contiguous
sections. Finally, the resulting 64-long blocks are stored back to external memory, again in
a manner that achieves a certain block permutation. The array has now been transposed
in just two passes. With an adjustment of the parameters (for example, with a block size
of 32 and a memory bu�er size of 1024), the transposition could be achieved in a single
pass.

Even from the above example, the power and generality of Fraser's technique can be
appreciated. Unfortunately, Fraser's algorithm cannot in general be performed in place
(i.e. using only one external dataset), unless one relaxes the requirement for a physically
transposed array (by utilizing pointers to index the external data blocks instead). However,
in special cases typical of common FFT sizes, there are other methods that can be done in
place and still produce a physically transposed array.

Consider �rst the case where n1 = n2, so that the matrix is square. In that case a
block interchange technique can be used to transpose the array in a single pass, in place.
This can be done by simply considering the external n1�n2 matrix to be decomposed into
square blocks of size b on a side, where b is the block size of an e�cient I/O operation.

10



The square blocks down the diagonal can be transposed simply by fetching the blocks one
at a time into main memory, transposing them using any e�cient main memory scheme,
and storing the resulting matrices back in the same locations. The o�-diagonal square
blocks can be fetched in opposing pairs, transposed in main memory, and then stored back
in opposite locations. One di�culty in applying this scheme is when the main memory
block size b is a power of two (which it almost always is). Transposing matrices whose
dimensions are powers of two in main memory, using the straightforward scheme, results
in severe memory bank con
icts on many vector supercomputers. However, such arrays can
be transposed completelywithout bank con
icts by fetching and storing opposite diagonals,
as is described in [6, p. 85]. The main memory scratch space requirement for the entire
scheme is 2b2 cells.

For the common case of power of two FFTs, it can be assumed that either n1 = n2
or else n1 = 2n2. In the second case, it does not appear possible to transpose the array
in one pass, in place, using only full block I/O transfers. However, such arrays can be
transposed in just two passes, in place, using only full block transfers, as follows. First,
consider the n1 � n2 external array as two blocks of size n2 � n2, and transpose each of
these two square blocks in place, as described in the previous paragraph. This completes
the �rst pass. Now consider the resulting data array in external memory to be a n2 � n1
matrix. Inspection of an example shows that the columns of the resulting array need to
be de-interleaved | column 2j; 0 � j < n2 needs to be moved to column j, and column
2j+1 needs to be moved to column j+n2 (here the columns are numbered beginning with
zero). This de-interleaving could be done b rows at a time using a main memory scratch
array of size bn1, but this task can be done more e�ciently and without need of substantial
scratch space by moving the columns in permutation cycles. For example, suppose n1 = 8
and n2 = 4, so that after the block transpose operations we have a 4� 8 matrix. Then the
�rst cycle would consist of storing column 1 in main memory, moving column 2 to column
1, column 4 to column 2, and column 1 (from main memory) to column 4. The second
cycle would consist of storing column 3 in main memory, moving column 6 to column 3,
column 5 to column 6, and column 3 (from main memory) to column 5. Columns 0 and
7 do not need to be moved. Note that this column movement procedure requires only 2n2
cells of main memory scratch space. The dominant scratch space requirement for this case
is thus 2b2 (for each of the two square block transpositions), the same as the case n1 = n2.

Performance Results Using the Minimal Scratch Space FFT

The above procedure has been implemented and tested on the Cray Y-MP, using one
processor and the SSD external memory device. The SSD I/O primitives SSREAD and
SSWRITE were called directly from the Fortran program. As before, the Cray library
simultaneous FFT routine (CFFTMLT) was used in steps one and four of the four step
algorithm. This routine is not an in-place FFT, so that a scratch array in addition to
the space for the data is required. Since the SSD is a rather limited resource, Fraser's
algorithm was not employed for the transpose steps | the in-place schemes described in
the previous section were employed instead. The block length b for e�cient I/O transfers

11



Size Scratch Using Memory Using SSD
m Space Time MFLOPS Time MFLOPS
16 338250 0.0704 149.00 0.1169 89.68
17 668266 0.1574 141.59 0.2529 88.10
18 668330 0.2897 162.90 0.3094 152.52
19 1328426 0.6391 155.86 0.6908 144.21
20 1328682 1.2263 171.02 1.3065 160.52
21 2649130 2.7007 163.07 2.8179 156.29
22 2650154 5.2996 174.12 5.6132 164.39

Table 4: Minimal Scratch Space FFT Performance Results

between main memory and SSD (or between main memory and disk) on the Cray Y-MP
system is 512.

Table 4 includes results not only for an actual external memory (SSD) implementation
of the above scheme on the Cray Y-MP, but also for a modi�ed version of the program
where the Fortran routines handling I/O actually just transfer data to a block of main
memory, insteading of referencing the Cray SSD primitives. With the latter �gures one
can actually see how much of the performance degradation is due to the algorithm and
how much is due to ine�ciencies in the Cray I/O system routines. The total amount of
main memory scratch space for this algorithm, including space for precalculated roots of
unity, is also included in this table.

Performing an FFT with Only Two Passes

The schemes that have been described so far produce a physically ordered FFT on an
external dataset in three or four passes. If one is willing to relax the requirement that
the �nal result be physically ordered, or if one is willing to allow a scratch dataset in
external memory of the same size as the input dataset, then the entire FFT operation can
be performed in only two passes (subject to certain conditions). The author is indebted to
Paul N. Swarztrauber for this observation.

As in the four step FFT above, it will be assumed in the following that n = n1n2 and
that b is the block size for e�cient I/O operation. Also, all references to matrices will, as
before, assume columnwise storage. For simplicity, it will be assumed for the time being
that two bu�ers of size 2bn1 cells each are available in main memory, although it will later
be seen that only one bu�er this large is necessary. Similarly, it will be assumed for the time
being that a scratch dataset equal in size to the input dataset is available in the external
memory device, although it will be seen later than this scratch dataset is not necessary if
one does not mind using pointers. This algorithm can then be stated as follows.

1. Consider the data in external memory as a n1 � n2 complex matrix. Fetch the data
b rows at a time into one of the main memory bu�ers. For each batch of b rows,

12



perform b simultaneous n2-point FFTs on the b � n2 array in main memory, using
the second main memory bu�er as a scratch array.

2. Multiply the resulting data in each batch by appropriate roots of unity as in the four
step algorithm.

3. Transpose each of the resulting b � n2 complex matrices into a n2 � b matrix, using
the second main memory bu�er as a scratch array, and store the resulting data on
the scratch dataset in contiguous order. Store successive batches of data in successive
contiguous sections on the scratch dataset.

4. Consider the resulting data in the scratch dataset as a n2�n1 complex matrix. Fetch
the data b rows at a time into one of the main memory bu�ers. For each batch of
b rows, perform b simultaneous n1-point FFTs on the b� n1 array in main memory,
using the second main memory bu�er as a scratch array, and return the resulting b
rows to the same locations on external storage from which they were fetched.

As before, this FFT is an ordered transform| no bit reversal transposition is necessary.
The reduction of the number of passes from three to two is accomplished by combining the
four step FFT with Fraser's transposition algorithm.

Let r = max(n1; n2). Then at least one main memory bu�er of size 2br is required in
the above to hold b rows of the fetched data. However, the second main memory bu�er can
be sharply reduced in size in many cases of interest. The additional scratch requirement
for performing the simultaneous FFTs in steps 1 and 4 can be reduced to only 2vr by
performing the FFTs in batches of v rows, where v is the natural vector length of the
system. If an in-place algorithm is used for the simultaneous FFTs, then this scratch
requirement can be completely eliminated.

Also, in the most common case of power of two transforms, the additional scratch space
needed for performing the main memory transpose in step 3 above can be reduced to only
2r cells by applying techniques similar to those mentioned above for transposing power of
two arrays in external memory. One di�erence in this case is that the second dimension n2
can be much larger than the �rst dimension b. Nonetheless, the basic scheme of transposing
the square sub-blocks in place and then moving columns in permutation cycles can also be
applied for this application.

Main memory space to hold precomputed roots of unity can be reduced from 2n to
only 8r by using the dynamic block method described above. Thus the total main memory
storage requirement for power of two transforms can be reduced to only 2(b + 5)r cells
using this algorithm.

The requirement for a separate scratch dataset in external memory can be eliminated
by utilizing a block indexing scheme. At the end of step 3 above, the blocks of data
then in main memory can be returned to the same set of blocks in external memory from
which they were fetched, provided a table is maintained of where they are kept. Actually,
a table is not even necessary | the permutation involved here is a simple index digit

13



Size Scratch Using SSD
m Space Time MFLOPS
16 207178 0.0824 127.26
17 668266 0.1659 134.34
18 668330 0.2705 174.44
19 1328426 0.5607 177.67
20 1328682 1.1960 175.35
21 2649130 2.4966 176.40
22 2650154 5.1872 177.89

Table 5: Two Pass FFT Performance Results

permutation. However, the ultimate user of the transformed data would also need to use
the same indexing mechanism to access the data.

This \two pass" FFT algorithm has been implemented on the Cray Y-MP using SSD.
A separate SSD scratch array was used instead of the virtual block scheme just mentioned.
This implementation also employed many of the same procedures discussed above to con-
serve main memory scratch space. The resulting performance �gures are shown in table
5. As expected, these results are even higher than the SSD �gures in table 4. In fact, the
performance �gures listed in �gure 5 are almost as high as those for Cray's main memory
FFT, which are listed in table 2.

Conclusion

The excellent data locality of the four step FFT algorithm and its derivatives clearly
is a signi�cant advantage for a number of advanced computer systems. In addition, the
fact that most of the computation in these schemes reduces to simultaneous FFTs permits
some rather high performance implementations. It has also been demonstrated that some
apparent weaknesses of the basic algorithm, such as its large root of unity and scratch
space requirements and its reliance on array transpositions, can be largely eliminated by
employing some advanced techniques.

The performance �gures in tables 4 and 5 show that very large FFTs can be e�ciently
computed using a Cray Y-MP with SSD. In fact, with 33 million words of main memory
and 268 million words of SSD, it should be possible to perform a FFT as large as 227 =
134; 217; 728 complex points, provided the SSD device can hold precisely 228 data elements
and no fewer. Such favorable results might not be possible on other systems with slower I/O
to external memory, but the techniques that have been presented should greatly improve
the performance reduction that otherwise occurs.

Another important limiting factor in performing very large FFTs in external memory,
which has not been mentioned yet, is the fact that there is often a signi�cant wall clock delay
in performing I/O of any sort, even if the CPU time performance is acceptable. Wall clock
performance is particularly important when one is using almost all of main memory, so that

14



other jobs cannot be utilizing CPU resources when one's own job is waiting for I/O. Such
wall clock delays can be mitigated by overlapping computation and I/O where possible,
and by performing several I/O operations concurrently, provided the overall system I/O
bandwidth is not a limiting factor. Also, some systems have I/O primitives that allow data
to be accessed in external memory in sequences of contiguous blocks with a constant skip
distance between blocks. This is exactly the situation in all of the algorithms mentioned
above, and thus such an I/O function could be expected to substantially improve the wall
clock performance of this FFT scheme, and perhaps the CPU time performance as well.

References

1. Agarwal, R. C., and Cooley, J. W., \Fourier Transform and Convolution Subroutines
for the IBM 3090 Vector Facility", IBM Journal of Research and Development, vol.
30 (1986), p. 145 - 162.

2. Aggarwal, A., and Vitter, J. S., \The Input/Output Complexity of Sorting and
Related Problems", Communications of the ACM, vol. 31 (1988), p. 1116 - 1127.

3. Armstrong, J., \A Multi-Algorithm Approach to Very High Performance 1D FFTs",
Journal of Supercomputing, vol. 2 (1988), p. 415 - 433.

4. Ashworth, M., and Lyne, A. G., \A Segmented FFT Algorithm for Vector Comput-
ers", Parallel Computing, vol. 6 (1988), p. 217 - 224.

5. Bailey, D. H., \A High-Performance Fast Fourier Transform Algorithm for the Cray-
2", Journal of Supercomputing, vol. 1 (1987), p. 43 - 60.

6. Bailey, D. H., \A High-Performance FFT Algorithm for Vector Supercomputers",
International Journal of Supercomputer Applications vol. 2 (1988), p. 82 - 87.

7. Fraser, D., \Array Permutation by Index-Digit Permutation", Journal of the Associ-
ation for Computing Machinery, vol. 23 (1976), p. 298 - 309.

8. Gentleman, W. M., and Sande, G., \Fast Fourier Transforms { For Fun and Pro�t",
AFIPS Proceedings, vol. 29 (1966), p. 563 - 578.

9. Swarztrauber, P. N., \FFT Algorithms for Vector Computers", Parallel Computing,
1 (1984), p. 45 - 63.

10. Swarztrauber, P. N., \Multiprocessor FFTs", Parallel Computing, vol. 5 (1987), p.
197 - 210.

15


